
Jason Brownlee

Mobile Game Engines
Interviews with Mobile Game Engine Developers

ii

Mobile Game Engines
Interviews with Mobile Game Engine Developers

c© Copyright 2013 Jason Brownlee. All Rights Reserved.

http://mobilegameengines.com

iii

http://mobilegameengines.com

iv

Chapter 1

Steffen Itterheim
Kobold2D

1.0.1 Background

Brownlee: Where in the world are you located?
Itterheim: Ingelheim, Germany.

Brownlee: Who do you work for and what is your current role?
Itterheim: I’m self employed. I wrote a popular book about cocos2d-
iphone called “Learn Cocos2D”. I blog on the website with the same name.
I manage the Kobold2D game engine that wraps cocos2d in an easier to
use package. I write a lot in general.

From time to time I do freelance work but only if it fits my bill (and
pays my bills) and it’s an interesting project.

Brownlee: Could you please introduce yourself?
Itterheim: I’ve been a gamer since Atari VCS 2600, aging through C-64
and Amiga to PC. Since 2009 I’ve been exclusively on Mac OS and iOS
development, and most of my gaming time I spend on the XBOX360, and
the occasional Steam game.

I’ve been working in the game industry since 1999, at first Gameboy
(Color/Advance) games and later at Phenomic on PC strategy and role-
playing series Spellforce and under EA on the real-time card trading game
Battleforge.

My professional roles were very diverse, I worked as game designer,
programmer and manager. I programmed game logic, small and large tools,
script engines, dialog parsers, database stuff in C++, C# and Lua. I
designed game levels, quests, user interfaces. The only job I was never
really happy with was management. Mostly because I didn’t know what to

1

Chapter 1. Steffen Itterheim
Kobold2D

do, what was needed, and I still had my previous responsibilities. So like
many before and after me in the same situation, I kept doing what I knew
best.

Brownlee: How long have you been programming?
Itterheim: Well actually this is a bit difficult. Until around 2006 I hadn’t
been a full-time programmer by title or tasks. On the other hand, if you
count scripting languages it goes way, way back. BASIC on the C-64,
some Amiga Basic, MS-DOS batch scripts, a bit of Turbo Pascal. But
nothing serious, just enough to get stuck way too early. Later came all
the Quake and other game scripts, which landed me a job working on
Gameboy games where the game logic was implemented in a proprietary,
statemachine scripting language with a visual dropdown interface. That
was awesome!

My first hardcore, low-level programming session wasn’t until around
1993 when Doom was fresh and hot. I used C to poke around in the
WAD files, displaying the textures on screen and saving them to disk as
bitmap files. It was a hack but it worked. Since then I’ve been spending
time educating myself on C, C++ and various scripting languages, mainly
Python and Lua.

Brownlee: What are some of the game engines you have worked on?
Itterheim: Almost all of them were proprietary internal developments. If
you count Game Maker as a game engine, then I spent a lot of time with
that. I’d still wholeheartedly recommend this tool to anyone who wants to
understand how to make games, not just program them.

1.0.2 Your Game Engine

Brownlee: What is the full name of your game engine?
Itterheim: It’s Kobold2D.

Brownlee: Could you please describe your game engine?
Itterheim: First I like to say that I feel a bit uneasy calling it “my game
engine” because it is powered by cocos2d-iphone, and Kobold2D is more
like a Linux distribution that takes the kernel and puts a nice GUI on top
of it, bundles other software and adds some extra features.

On the other hand cocos2d has done a fairly good job giving birth to
Kobold2D because it kept annoying me so much that I felt I needed to
apply a level of polishing, not just for my own sake. For example, it’s been
over a year that ARC1 is available, and cocos2d still doesn’t offer ARC
support out of the box. Users are told to work through someone’s tutorial

1Automatic Reference Counting

2

on the Internet which by now is pretty much outdated. Whereas Kobold2D
has ARC enabled in all projects since the early days.

What you also get with Kobold2D are a lot more example projects.
Several popular libraries are ready to use. Entire API references for all
libraries, as HTML and XCode help is available. Lua support is there.
Mac and iOS development in a single target. An installer. Tools to create
new projects and an easy way to make template projects. A tool to upgrade
your project to newer Kobold2D versions. And additional code that I’ve
developed over time, such as pixel-perfect collision detection and taking
screen shots.

I take care of the much needed maintenance when something out of
the ordinary happens, such as a new iOS or XCode version. If there’s a
compatibility issue, it’s the first thing I check and fix. With cocos2d it
usually takes a while until those fixes are in an official or even beta release.
Even if there’s a solution, users first have to find it, then apply it manually.
That’s why Kobold2D exists. To me a game engine is much more than just
the code.

Brownlee: What platforms does it support?
Itterheim: iOS and Mac OS X.

Brownlee: What programming language(s) is it written in?
Itterheim: Objective-C and Lua.

Brownlee: What is the current price and license structure of your game
engine?
Itterheim: It’s free. MIT License. Although, I have a store where you
can buy my own products and affiliate products.

Brownlee: What are the engines top 10 core features?
Itterheim: Besides what cocos2d offers that would be:

• Gesture Recognition.

• Game Center support.

• iAd and Admob support.

• Accelerometer and Gyroscope input with smoothing.

• Mac keyboard and mouse input handling.

• Pixel-perfect collision detection.

• Taking screen shots.

• UIView hit test support.

3

Chapter 1. Steffen Itterheim
Kobold2D

• Sprite animation helpers.

• Integrated Lua.

• Extended cocos2d classes with convenience methods.

• Plus all the other libraries ready for use, including cocos2d-iphone-
extensions, SneakyInput, Chipmunk Spacemanager, ObjectAL and
iSimulate.

Brownlee: When was it first released?
Itterheim: I think August 2011.

Brownlee: Could you estimate how many games have been built and
released using your engine?
Itterheim: Probably in the hundreds from the tweets I see. Not many
developers are too keen to mention the engine they used, simply because
it’s not really relevant to them. So the numbers are in the dark.

I wish I knew how cocos2d comes up with their usage figures, and
whether that includes Kobold2D projects as well.

Brownlee: What are some well known or notable games created with the
engine?
Itterheim: I can’t recall. There were a couple games that were quite nicely
done, but I see so many games and apps I couldn’t even remember whether
that was a Kobold2D game or not if I played it a second time.

I’m working on a game that started late 2010 and I ported it to Kobold2D
earlier this year. It’s a really cool game, it just takes very long to develop.
It’s an on-off thing. I think that’ll work as a show-off project for Kobold2D.

1.0.3 Building Your Game Engine

Brownlee: Why did you start working on this game engine?
Itterheim: Mainly because cocos2d frustrated the hell out of me, and
because I’ve seen others struggle with it too. So I wrote a book to document
cocos2d. Then I felt I knew enough about cocos2d that I could improve on
it.

Take for example the installer script. As cocos2d became more popular
more and more developers stopped by who had no idea how to run that
thing. And even if they did it would fail frequently. Stuffing a copy of the
cocos2d sources into every new project you create is just a maintenance
nightmare. Especially because you can’t easily upgrade an existing project
either. Many have failed to do so correctly. And keep failing. Not to

4

mention trying to create a cocos2d static library, which you have to do if
you want to use ARC.

That’s some of the reason why I did Kobold2D. I also did this as a
spin-off project because I didn’t want to have to compromise. Some of the
structural changes (the XCode project itself, how templates work, and so
on) were pretty radical but very necessary to move forward.

Brownlee: What was the first element you had working in the game en-
gine?
Itterheim: The XCode project. Because it’s the first thing I needed to
get right so the project template, the static libraries, the upgrade process,
the build configurations and many other things would work.

Brownlee: Did you initially develop alone or in a team?
Itterheim: Alone. There were several contributions from users though,
including a Japanese translation of the documentation.

Brownlee: Why create a new game engine rather than extend or license
an existing engine?
Itterheim: Well actually I did use an existing engine. Seriously, don’t
re-invent the wheel.

Brownlee: What are some challenges in supporting multiple mobile plat-
forms?
Itterheim: Actually it’s the project itself. This is one thing I fixed in
Kobold2D. Cocos2d allows you to target both iOS and Mac OS X. How-
ever you have to create two separate projects to do so, and there’s no way
to merge them. This is specifically a problem with assets (including source
code files) because you have to add, move or remove them twice.

In Kobold2D you have a single project with two targets, one for iOS
and one for Mac OS X. If you write your code carefully you can just switch
targets and build and run on the other platform. Even if you’re not so
careful there’s very little code you need to fix.

As for the engine itself, the most recent iOS and XCode versions intro-
duces breaking changes. All of them were fixed easily within an hour, half
a day if you include testing. Even if the errors were in other libraries like
cocos2d or Chipmunk I take care of them.

Brownlee: What are your thoughts on the trade-off between engine per-
formance and flexibility?
Itterheim: This is one of my pet peeves. For a long time cocos2d was
obsessed with performance. A percent here, a percent there. Nothing that
really mattered though while at the same time an influx of new devs were
struggling just to get started.

5

Chapter 1. Steffen Itterheim
Kobold2D

I certainly favor flexibility over performance. Ease of use over per-
formance. Features over performance. Documentation over performance.
Anything that gets the user’s work done faster over performance.

Performance is really the last thing a game engine developer should
consider. All of the other issues are more important. What good use
is a game engine that’s fast but users have trouble working with? You
can always optimize it later on. A base level of performance is of course
mandatory but not really hard to achieve.

I need a working engine that supports me in my daily work. One that
I can extend. One whose source code is easy to read and understand and
debug. One that’s documented well.

I also think game developers specifically have a weird attitude towards
performance. The way they ask about how an engine performs, and that
often being one of the first questions, it’s ridiculous. Just to put this in
perspective, let’s say I’m interested in buying a car and go to a car dealer.
For every car they show me I would ask pretty much right away “How fast
can it go?”. Then they might be so annoyed they’d actually show me a
car that’s really, really, really fast, and then I’d protest “No, that’s too
expensive, I want a free (and open source) car!”.

Asking about performance is something you may do before you close the
deal, but really the manufacturer’s speed limit doesn’t tell you anything
anyway. I drove a car that was specified as 170 km/h max speed and
I drove it past 210 km/h. Another car, same max speed, and it barely
managed to reach its manufacturer top speed even under ideal conditions.
And that’s in Germany, where you are legally allowed to go that fast on
some roads. Finally, you have to consider the driver. How often do you
see a high-powered car driving even below the speed limit? It’s twice as
annoying if you know they could go faster easily if they just cared enough
not to impede the traffic that’s behind them. But enough about cars.

The analogy for game engines being that the code you’re going to write
has a far greater impact on performance than the game engine itself. Any-
one can make a super fast game engine slow quickly by writing crappy
code. The real art of writing high-performance code lies in using any game
engine, doing tons of stuff with it to create your game and still have it run
smoothly. Writing high performance code is the job of the game developer,
the engine developer can only strive to make the rendering fast under ideal
circumstances and hope that game developers follow the engine’s guidelines
and best practices. Which quite frankly most of the game developers do
not. Because doing so requires not just excellent documentation but also
reading it, and understanding the game engine well enough to make the
right decisions.

In my opinion cocos2d made a couple of exemplary bad decisions in favor
of performance. For example, they included a hashed set implemented in
C and a C array (CCArray). Now they have a hard time updating this

6

code base to ARC because of all the embedded C code. Besides that, it
made reading the source code so much harder for Objective-C developers,
exactly why they attracted so many ObjC developers in the first place.
And by replacing NSMutableArray with CCArray, several nasty bugs and
even performance issues occurred.

In my opinion a couple percent better performance doesn’t justify using
an ever so slightly broken alternative piece of code. Stick with what’s work-
ing and reasonably fast, and optimize only the absolute worst performing
parts of your engine. Yes, it’s a problem if the performance is bad. In
that case it should be treated like a bug. Fix it where it’s broken. If the
performance is adequate, leave it alone. The code the user writes will have
a greater (negative) impact on the resulting app’s performance. You can
rarely improve that noticeably by improving your engine’s performance.

Instead of optimizing performance, spend that time writing better sup-
port code or tools for your users. I know that for programmers it’s tempting
to work on performance, because it can be measured so beautifully and ac-
curately. The results then give you immediate feedback that your work was
a success. It feels great! The problem is, you just wasted time working on
something your users won’t even notice. Performance is not a feature, it’s
a byproduct.

Brownlee: Which of graphics, physics and input handling were more of a
challenge?
Itterheim: The biggest addition to Kobold2D is KKInput, an input wrap-
per that allows you to poll input states. This makes it easier to to use than
the event-driven approach.

At its core, KKInput gets the input events and remembers them for
the time being, which usually means until the next frame. So the user can
at any time from any class or function check if a certain input event has
occurred in this frame.

KKInput wraps iOS’ gesture recognizers, gives you access to the gy-
roscope and also provides smoothing (high-pass and low-pass filtering) of
acceleration values. On the Mac side I had to wrap all keyboard and mouse
keys into a simple to use interface.

Brownlee: What is your approach for staying abreast of changes to the
underlying technology and device APIs?
Itterheim: Wait and see. When the final release of a new iOS, Mac OS or
XCode version comes out, I test all the projects for issues. They’re usually
easily fixed.

If you’re working on projects that might get released in the next 3
months or so, it’s a really, really, really stupid idea to install the iOS beta
versions. Because you can’t downgrade, and you can’t release until the beta
version is released by Apple, and you can’t get support on the Internet for

7

Chapter 1. Steffen Itterheim
Kobold2D

beta version issues either. It’s worse if you might get a lucrative, quick
2-week job to make an app and you just installed the first beta version of
the new iOS. Tough luck. Now you got to find a way to uninstall the beta
version, or just hope for the best (and hope, it’s not a strategy).

I wish Apple would allow for a way to switch between stable and beta
versions of iOS, XCode and so on. But it’s really up to you. Get another
device and another Mac or at least a separate boot drive to be able to make
the switch.

Brownlee: What is one big element of the game engine you wish you could
go back and do differently?
Itterheim: Well maybe if I could go back and I had more time to spend
on it.

I initially included Wax (Lua runtime scripting for iOS) but I really
only needed the Lua init stuff. I should have just left it out. Same for
cocos3d perhaps, it’s not really catching on as I thought it might. Makes
sense if you consider that even Unity is free, and you get all the important
tools you need when you make 3D games.

1.0.4 Maintaining Your Game Engine

Brownlee: Do you currently think of the game engine as a project or a
product?
Itterheim: It’s definitely an ongoing effort, a service. At the very least one
update for every major new release, be it iOS, Mac OS, XCode, Cocos2D
or something related.

Brownlee: What development tools do you use in a typical week?
Itterheim: Well, there’s XCode obviously. I also use the text editors
Smultron and Sublime Text 2 frequently. Perforce and github (Tower) for
source control. And the Hudson build server. I also use all the Cocos2D
tools like Texture Packer and Glyph Designer frequently.

All pretty standard if you ask me.

Brownlee: How many people are currently working on the game engine
and how is the effort structured?
Itterheim: Just me. Whenever I got some spare time.

Brownlee: What are some common maintenance tasks in a given week?
Itterheim: Not much day-to-day really. I’m developing a game on the
side built with Kobold2D. So I’m using Kobold2D in my day-to-day work
and whenever I come across something that needs to be fixed or added, I
usually end up doing that right away. I recently wrote the 3rd edition of
my book, and I’m deep into writing Essential Cocos2D, a online reference

8

documentation for Cocos2D and Kobold2D focusing on the tech details and
best practices, but also user support. I’m sure out of that will come a more
lively development cycle for Kobold2D as well.

Brownlee: Who wrote the documentation for the game engine?
Itterheim: That was me, except for the API references which was made
by the respective source code library developers. A Kobold2D user also
translated the Kobold2D documentation to Japanese.

Brownlee: What are the core benefits in having a development community
around your game engine?
Itterheim: You get feedback, you learn what people want and need. This
is interesting because I’ve come to use a few things they use too. And
learned different ways to approach an issue. It keeps making me look up
things nobody really knows, which I find intriguing to figure this stuff out
and share it.

Brownlee: How do you generally engage the community?
Itterheim: Infrequently I make a poll or survey, but most of the time it’s
blog posts. Every two weeks I write a #iDevBlogADay post, and typically
it’s about iOS coding topics.

When you read this, Essential Cocos2D should be available. It’s not
just reference documentation but also a membership program where I help
developers become better coders. I’ve always liked answering technical or
design questions, I like to translate between the two sides.

Technology is useless without design, and many cool designs wouldn’t
exist if it weren’t for technology.

Brownlee: What are some ways that your interaction with the develop-
ment community around your engine have influenced features or the direc-
tion of your engine?
Itterheim: Game Center was added because users wanted it to be in the
engine. Same with iAd and specifically AdMob. I hadn’t considered Ad-
Mob until I learned from others how popular it was.

But mostly it was me watching beginners struggle with Cocos2D. That
was also a great help to improve my book over time, getting all those
questions from readers who needed more insights on this or that topic.
Sometimes the result of that is a piece of handy code that I add as a
convenience method to Kobold2D.

I would say I’m mostly an observer, not so much interacting. For exam-
ple if there’s something debated on the cocos2d forums but the community
members don’t get it (quite) right. This is often accompanied with a lot
of code sharing, repeated tweaking, fixing (or breaking) other developer’s
code. You then end up with a thread that’s several pages long and there’s

9

Chapter 1. Steffen Itterheim
Kobold2D

so many code fragments and in-between or specialized version, it’s become
practically unusable. Have two coders grab the code and implement it in
their own project, and they end up with two different implementations with
subtle differences and all that. Maybe one’s not even working. Or both.

This is always good material to write a blog post about, because I know
there’s interest and I usually see room for optimization both in performance,
memory usage or simply readability (which I find is most important). So
I like to retrace the steps, build my own implementation with a demo,
and share it so it can be applied with copy and paste or just runs after
downloading. The result is a blog post and often the code ends up in
Kobold2D as well.

Brownlee: How do you manage the problems around remaining backward
compatible?
Itterheim: Not at all. There have been very little breaking changes in
Kobold2D. Cocos2d is a different matter, but they’re very conservative
except for the recently released v2.0 which changed a number of API calls
from v1.0. But again, not nearly enough to make it a real problem to
upgrade from v1.0 to v2.0 if you know what to do, where to look.

Brownlee: How do you structure the release process?
Itterheim: At the moment I’m not following a plan. There’ll be a new
release whenever there’s a new XCode, iOS, Mac OS or cocos2d version or
there’s a serious bug. I like to change that though, make more frequent
updates.

Brownlee: What processes do you use to manage code quality in your
releases?
Itterheim: The most important part is continuous integration and a build
server. Whenever I check in a change, the build server (my old 2009 Mac
mini) starts building every example project. A full rebuild of all projects
takes nearly 2 hours.

The Hudson build server builds 54 targets almost evenly split between
Mac OS and iOS. Each target is built twice in debug and release configura-
tion. In addition the iOS targets are built for both iOS Simulator and iOS
Device. The process is repeated with the second to last version of XCode,
and sometimes even the third to last XCode version. Overall there’s any-
where between 360 to 540 targets being built in a complete test cycle. So
that’s where the 2 hours come from.

Fortunately most builds are not full builds, so it takes around 15 minutes
for a complete cycle if a recent build was (mostly) successful.

Brownlee: What features would you like to add to your game engine over
the next twelve months?

10

Itterheim: KoboldScript, Lua game logic scripting. I really want to make
it a simpler interface for designers to help develop the gameplay logic with
state machines, modifying the scene layout, experimenting with object be-
haviors.

I’m also thinking about ways to extend Cocos2D with an MVC design
without having to change cocos2d’s source code. There’s got to be a better
way to write code for cocos2d. Currently too many developers rely too
heavily on subclassing. I think I can design something where it’s even
encouraging to use for beginning developers, most MVC implementations
for cocos2d are neither well explained nor straightforward to implement nor
can you immediately see the beauty and benefits of the MVC approach.

Brownlee: On which other game engines do you keep a close eye?
Itterheim: I watch cocos2d closely because I need to know when there’s
a new release coming. I don’t care about any other engine at the moment,
not even any of the cocos2d variants for different platforms, like cocos2d-x.
I listen up if something happens in the Corona, Unity or Unreal space, but
those are very different ballparks so to speak.

There’s really no competition for cocos2d, in the sense that there’s no
iOS game engine that’s 2D, code-centric, free and open source. Sparrow
Framework is the only one that comes close. But I think it’s too close to
cocos2d, so there’s no real reason why cocos2d developers should switch
over. If developers quit using cocos2d, it’s for Unity. I’m excited to see
what Matt Rix can do with his cocos2d-esque, code-centric 2D game en-
gine for Unity. It’s called Futile. I like the thought of going back to C#
programming once again, maybe someday.

Brownlee: What are some features of your marketing strategy for the
game engine?
Itterheim: No marketing, just the usual social media connections but I’m
not actively pushing them or anything. I used to run Google Adwords for
Kobold2D but that’s just such a huge money sink for something that’s free,
it’s not worth doing.

1.0.5 Getting Started with a Game

Brownlee: What would you suggest to a developer looking to start making
a game with your engine?
Itterheim: There’s my Learn Cocos2D 2 book obviously. The third edition
is fully compatible with Kobold2D. And there’s also Essential Cocos2D
where I answer all the questions I get.

Definitely check out the many Kobold2D example projects because
there’s plenty of code examples to learn from.

11

Chapter 1. Steffen Itterheim
Kobold2D

Brownlee: What suggestions do you have for developers working with
your engine daily?
Itterheim: Woah. Hmmm. One thing, perhaps. Don’t be afraid to read
the Apple docs. They’re really, really good! I know people complain about
them too. But compared to other vendor documentation I’ve seen, Apple’s
docs are fantastic, hands down. It’s just a bit hard to find what you’re
looking for, but that’s partly because there’s so much documentation on
the site.

Brownlee: What are some game ideas you have had but do not have the
time to work on?
Itterheim: So many of them. I still have this “One Game Idea A Day”
idea on the backburner. My idea was to post a game idea every day, and
it should be about something no one has created yet. Personally I think
we game developers are looking too much for the fantastic. It’s all about
orcs and rocket ships and princesses and blobs and cartoon characters. But
where are the cool and fun games with a minor educational component?

I’d love to do a game about surfing the Pororoca. Don’t know what it
is? Why it happens? When and how often? Play the game!

Or a game where you try to save energy in your house year by year to
counter the increasing energy prices. Learn what uses more energy: a 60
Watt light bulb that’s on for 6 hours or the hair dryer that runs once a day
for 5 minutes.

What about sea exploration, has no one ever done a fun game about
that? Where you hunt for sunken treasures, for example. Or discover and
research lifeforms in the deep sea.

I like watching documentaries. They give me all kinds of cool ideas what
to make into a game. And sometimes I wonder why no one hasn’t before?
Why is everyone so obsessed making games with overly cute characters, or
brutal military shooters, or boringly stiff simulators? Where are the real
“real world” games? You know, the Ice Road Truckers or Storage Wars of
gaming.

Brownlee: What do you think are the required skills for building a great
game?
Itterheim: If you’re a single developer, a little bit of everything helps. But
I think the most important skill is to figure out what you’re good at, and
how to make up for the parts where you’re not so good at. For example
instead of creating coder’s art, I’ve seen awesome games that were entirely
vector art and effects. No drawing required. Other games like Doodle Drop
simply declared badly sketched art as their style.

If you need or want a partner in crime, the most important skill is
finding the right partner. Team up with someone who’s not like you, who

12

has different skills. Two programmers thinking alike is most likely going
to end up in a technically well done, but ultimately boring game. Two
opposing but cooperative minds, well the result is more likely going to be
one of the two extremes: a disaster or pure genius.

1.0.6 With a Successful Game Engine

Brownlee: How much revenue have you generated from your game en-
gine?
Itterheim: Nothing from the engine itself. It may have helped sell my
products and affiliate product, but I don’t know how much, if any. I can say
that affiliate products alone are between $100 to $400 per month. That’s
easy money, I love that!

My own products, they wary between $200 to $800 from month to
month. Especially the summer months, and the first really sunny spring
month are bad for selling source code. And the book, most recently it must
have been about $400 per month. Unfortunately, with all the money I’m
spending on hardware and software, that means I’m not breaking even. I’m
almost done with freelance work, I get paid a bigger sum maybe once more
and then that’s it. That’s why I have high hopes for Essential Cocos2D.
With about 50 members I can relax somewhat, with 100 I should be good
for the time being and set something aside or re-invest.

Brownlee: What are some opportunities that you have received because
of your game engine?
Itterheim: Many, many, many offers to work for others. Not really inter-
esting for me to be honest.

There’s one book publisher which shall remain nameless that writes
me every 2 months or so, asking if I wouldn’t like to write a book about
Cocos2D for them. I keep telling them that I already wrote a Cocos2D
book, and can’t. They just don’t seem to take no for an answer. Sometimes
it’s even the same person asking the same thing, that tells you how much
they’re interested.

Speaking, no. Perhaps if I went more out there and offered, there’ll be
some who would consider or like having me. But I’m in Germany, there
are very few events here, and the only really interesting one that’s about
games, it’s just ridiculously expensive to attend. I don’t like to spend $1,000
overall just to attend a speaking event, either overseas or within Europe.
I’m not much of a marketer, networker or drinker, so there’s little benefit
in it for me.

I also feel quite comfortable doing all of this from home. Don’t get me
wrong, I enjoy being at the events that I do attend, speaking or not. But
they’re over so quickly, and when I’m working, I just don’t think of all the
events around me. That’s always been that way for me, I’m a little out of

13

Chapter 1. Steffen Itterheim
Kobold2D

touch with the world and what’s happening and when that is happening.
I’m often surprised by, you know, how late in the week or month it is
already. It’s usually others who ask me whether I’ll be attending event X
that I realize “Oh, that’s tomorrow?!?”.

Brownlee: What elements make for a successful mobile game engine?
Itterheim: Be there first and provide something users need. I think co-
cos2d got successful because it was the first free, open source game engine
that focused on 2D development. A major plus was that it was written
in Objective-C, at a time where most engine developers were like “Noooo,
Objective-C, that’s way too slow to build an engine with, it has to be all
C!”. Fools!

So because of that, and alternatives were either C/C++ and/or 3D
and/or commercial it became successful despite the lack of features, despite
barely any documentation, mainly on the promise to write iPhone games
in Objective-C and without having to know OpenGL. That promise, that’s
what’s important. You have to have that one thing everyone wants or needs.
Game developers don’t want to write an OpenGL rendering engine, they
want to make games. But they also don’t want to learn a new language to
do so.

If you look at the other Cocos2D engines, their drop-off in popularity is
immense. Even though a whole team works on Cocos2D-X, and they too
fill a niche for an open source, cross-platform 2D game engine, they’re just
a fraction of the popularity of cocos2d-iphone. The reason is that there’s so
many other competing engines and frameworks that provide cross-platform
support. And of course C++ which speaks only to more seasoned devel-
opers. But most importantly, 90% of game developers simply don’t care
about cross-platform. Or maybe some more do but they still start targeting
one specific platform first.

Personally I strongly believe that small game engines should focus on
supporting their primary platform as well as they can, with the platform’s
native tools. The biggest mistake you can make is to tackle cross-platform
development. It binds so many resources and energy, and you end up having
to work with tools that are built on compromises, and you have to write
code that has to make compromises too.

That’s also what worries me a bit about Cocos2D’s future, with the big
plan to make a cross-platform JavaScript API that’s supported by several
major Cocos2D engines, very likely because Zynga wants it that way. I
wager that 80% of Cocos2D developers couldn’t care less about JavaScript,
they’d much rather see other things being developed.

For Kobold2D I will continue to focus on iOS and Mac development,
and make no compromises regardless of where cocos2d is heading.

Brownlee: What tactics do you think got you over the line when so many

14

other software projects fail?
Itterheim: Most software projects fail because too many people work
on software whose users don’t participate in the development. Or simply
because too many people work on it, period.

For me it was a matter of pride, and to make a statement. This is
how it’s done! If you set your mind aside for a moment from writing code,
instead listening to users and thinking about the infrastructure and how
your project is being used and where the problems are in that, then what
I did should come naturally. The result is my interpretation of the flaws of
cocos2d that needed fixing; my statement is Kobold2D.

It’s also my way of thinking. Many programmers think only in code,
classes, methods, properties, types, structs, algorithms, and so on. But
what’s really more important in a project that’s going to be used by users
is the end user experience. At some point, that’s what matters most. I still
get this icky feeling when I think how cocos2d encourages bad code design
just from the way it’s built. A game engine isn’t just a piece of source
code, it’s an object of study, something even beginners use and learn from.
But the sad truth is, every time a cocos2d developer subclasses CCSprite
to add game logic, a cute little kitten dies a slow and painful death.

To be fair, I’m not much of a game engine programmer, I’m more in-
terested in the systems engineering part. Designing the public interface.
The end user’s workflow. And promoting good design principles. So I al-
ways have an eye on those things. It’s what my jobs taught me is most
important, help others get their work done quickly and efficiently. I like
the challenge in that, it requires thoughtfully designed code and systems.

Brownlee: What is the most difficult module or sub-system when devel-
oping a game engine?
Itterheim: Designing the public interface. How the engine gets used. How
straightforward, logical it is. How to make it simple yet powerful. How to
make the simple things simple and the difficult things reasonably simple
but hiding their complexity from those who don’t need it.

The second most difficult thing is documenting it. It’s actually not that
hard, but you forget about it while writing code. But you shouldn’t because
documenting something gives you a lot of insights about your own work.
How you could improve it. If you fail to explain a method in a short and
concise manner, perhaps it needs refactoring.

Brownlee: Would you do it all again?
Itterheim: Sure, absolutely!

Brownlee: What would you do differently if you were to start the project
from scratch today?
Itterheim: Perhaps slim it down a little bit more. Initially I wanted to

15

Chapter 1. Steffen Itterheim
Kobold2D

cram too much into it, that was counterproductive.

Brownlee: How does it feel to have a game engine that developers are
using to build and release games?
Itterheim: Uhm, I really don’t know. I don’t think about it this way. I
just hope it works and doesn’t break for anybody or does any harm. I work
on Kobold2D because I want to work out the things that make it better.
I like making it better, and every new release with additional fixes where
I learned how they work, why they appeared and how I could fix them,
that’s success for me. The learning part.

Getting it out there so others can benefit from it, it’s hard to describe,
I think it’s relief in a way. Basically what that means is I don’t have to
worry anymore that I have a product out there many developers are using,
and it’s currently not working right or not having some features I think
it should. That’s my biggest worry, it’s painful, but it’s also motivating.
I couldn’t sleep knowing there’s a big issue with Kobold2D and I didn’t
spend the necessary time to make it right.

I hate to be responsible, that’s why I fix stuff.
But that also made me careful, because it’s so easy to create something

that might end up being a huuuuge responsibility. And you’ve got to really
love what you do, otherwise the responsibility will kill your drive and ded-
ication. The more you neglect something you’re responsible for, the more
it’s going to hurt your self esteem and your will to carry on with it. If you
just keep moving forward frequently, if only a little bit, you can go a long
distance.

Oh my, maybe I should teach philosophy?

Brownlee: What is one thing about your game engine with which you are
not happy?
Itterheim: The split between v1.x and v2.x. It just doubled the workload.
So I’m going to stop updating the v1.x branch soon.

Brownlee: What advice do you have for a developer thinking of creating
a mobile game engine?
Itterheim: Only one question: what the hell are you doing?

If you are developing an engine for the engine’s sake, and to learn from
the process, go ahead. If you think your game needs a special engine, think
again. Write a prototype in an existing game engine. You can either use
that engine or write your own and double if not quadruple development
time. If you have time and money to waste, do the latter.

Brownlee: What are some must-read books and resources for a developer
interested in creating a mobile game engine?
Itterheim: Hmmm nothing comes to mind right now.

16

1.0.7 On Games

Brownlee: What are some games on which you have worked?
Itterheim: Before mobile, that was Spellforce and Battleforge for PC. And
Dave Mirra Freestyle BMX for Gameboy, among several others.

For mobile there’ll be a game out soon from famous German cartoonist
Joscha Sauer2. I programmed that game. A lot of time went into the
weirdest thing: smoothly animating a stream of pee. You know, just the
most normal thing in the world to put into a game.

Brownlee: Where do you think mobile gaming will be a few years from
now?
Itterheim: Mobile devices and hand-held gaming devices will slowly but
surely become more and more similar to one another. To a point where
I think Sony’s PSP will eventually be running on Android. Android will
also move into TV boxes similar to Apple TV, and end up being built-in
to some TVs not just for media streaming but as the TV’s entire operating
system.

Many more specialized and cheaper mobile devices will appear. Apple’s
new iPod nano is just a start. There will be mobile devices for less than
$100 that run Android, perhaps even iOS, and have a touch screen and can
download apps. I think this will bring a new market for “gadget” apps,
very simple apps and games. They do one thing, and one thing only. Show
me the weather. Entertain me for 5 minutes. Play fart sounds.

Brownlee: What is your favorite game and why?
Itterheim: I spent well over 200 hours in Skyrim. But is it my favorite
game? It feels like I’ve already played my favorite games 10 to 20 years
ago. I wouldn’t be where I am today if it weren’t for Doom, that’s definitely
an all-time favorite. I love what the mod community is doing to this day.
Skulltag, try that out, just pure awesome! If we would have had that nearly
20 years ago, I think we would have overdosed!

Brownlee: What are some trends you are seeing in mobile gaming?
Itterheim: A very obvious trend is doubling the computing power with
every new device generation, every year. At least that’s the case with Apple
devices. If you look at the quality of 3D games, the first devices had about
Playstation 1 visuals. With the third, or the fourth generation at the latest
we entered the Playstation 2 era on mobile devices. Now the iPhone 7 we
should be much closer to what we see on a Playstation 3 these days. Of
course that’s all with a much smaller screen, but it’s still impressive.

We’ll definitely see the big major game engines making it big time on
all platforms. Unreal and Unity are the pioneers, they’re the Apples and

2http://nichtlustig.de

17

http://nichtlustig.de

Chapter 1. Steffen Itterheim
Kobold2D

Microsofts of game engine development. Other game engines can only hope
to find and serve a niche. New game engines, no way. No chance there’s a
new game engine that’s not out yet and will play any role whatsoever, in
particular if it’s cross platform. The game engine market is saturated.

The hopes of a single indie developer hitting it big time on any App
Store will be zero. You’ll have to invest a significant amount of time and
money to make a splash, and have a significant development experience
to build on. That means the risk will go up for indies, as it did on other
platforms before. Indies will start to compete against each other much
more than they will compete with the big names though, that’s the sad
part. Eventually we’ll come to consider the years 2010-2015 as the heydays
of the indie developer.

Then the startup costs and risks will be so high that you need to have
some startup funding in order to have a decent chance of making it, and
the market consolidates again. Indie studios close or get bought out. It’s a
cycle that keeps repeating.

Until a new Indie-friendly market appears. Perhaps TV Apps? One
thing is for certain: Indies will continue to play a vital role in game business,
and there will always be lucrative niches only Indies can tap into.

1.0.8 Final Questions

Brownlee: How can readers best get into contact with you?
Itterheim: I prefer twitter. Short and to the point. Otherwise either
join Essential Cocos2D if you want frequent Q&A and my help, or just
send me an email at steffen@learncocos2d.zendesk.com if it needs to
be personal. But expect a delay, it can take me a couple days to answer
(non-member) emails. I definitely prefer more public communication for
the simple reason that things I say may be of interest to others too. If you
have a question that others might be able to answer as well, you should
post on http://stackoverflow.com. I’m spending way too much time
there already.

18

steffen@learncocos2d.zendesk.com
http://stackoverflow.com

1.1. More Information 1.1. MORE INFORMATION

1.1 More Information

This was just a sample from the book “Mobile Game Engines: Interviews
with Mobile Game Engine Developers”. For more information please visit
http://mobilegameengines.com

19

http://mobilegameengines.com

	Steffen ItterheimKobold2D
	Background
	Your Game Engine
	Building Your Game Engine
	Maintaining Your Game Engine
	Getting Started with a Game
	With a Successful Game Engine
	On Games
	Final Questions

	More Information

